Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Global model simulation of summertime U.S. ozone diurnal cycle and its sensitivity to PBL mixing, spatial resolution, and emissions

Identifieur interne : 000094 ( PascalFrancis/Corpus ); précédent : 000093; suivant : 000095

Global model simulation of summertime U.S. ozone diurnal cycle and its sensitivity to PBL mixing, spatial resolution, and emissions

Auteurs : Jin-Tai Lin ; Daeok Youn ; Xin-Zhong Liang ; Donald J. Wuebbles

Source :

RBID : Pascal:09-0048805

Descripteurs français

English descriptors

Abstract

Simulation of summertime U.S. surface ozone diurnal cycle is influenced by the model representation of planetary boundary layer (PBL) mixing, spatial resolution, and precursor emissions. These factors are investigated here for five major regions (Northeast, Midwest, Southeast, California, and Southwest) by using the Model for Ozone And Related chemical Tracers version 2.4 (MOZART-2.4), with important modifications, to conduct sensitivity experiments for summer 1999 with three PBL mixing schemes, two horizontal resolutions and two emissions datasets. Among these factors, the PBL mixing is dominant. The default non-local scheme well reproduces the observed ozone diurnal variation, where the timing for the afternoon maximum and the morning minimum is within 1 h of the observed; biases for the minimum are less than 5 ppb except over the Southeast; and the ozone maximum-minimum contrast (OMMC) is within 10 ppb of observations except for the overprediction by 18.9 ppb over the Northeast. In contrast, the local scheme significantly overestimates the OMMC by 10-34 ppb over all regions as ozone and precursors are trapped too close to the ground. On the other hand, the full-mixing assumption underestimates the OMMC by 0-25 ppb, except over the Northeast, as the nighttime ozone decline is greatly underpredicted. As compared to PBL mixing, the effects of horizontal resolutions and precursor emissions being used are smaller but non-negligible. Overall, with the non-local mixing scheme, relatively high horizontal resolution (∼1.1°) and updated emissions data, the modified MOZART is capable of simulating the main features of the observed ozone diurnal cycle.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 1352-2310
A03   1    @0 Atmos. environ. : (1994)
A05       @2 42
A06       @2 36
A08 01  1  ENG  @1 Global model simulation of summertime U.S. ozone diurnal cycle and its sensitivity to PBL mixing, spatial resolution, and emissions
A11 01  1    @1 LIN (Jin-Tai)
A11 02  1    @1 YOUN (Daeok)
A11 03  1    @1 LIANG (Xin-Zhong)
A11 04  1    @1 WUEBBLES (Donald J.)
A14 01      @1 Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign. 105 S. Gregory Street @2 Urbana, IL 61801 @3 USA @Z 1 aut. @Z 4 aut.
A14 02      @1 Research Institute of Basic Sciences and School of Earth and Environmental Sciences, Seoul National University, Sillim 9-dong @2 Gwanak-gu, Seoul 151-747 @3 KOR @Z 2 aut.
A14 03      @1 Illinois State Water Survey, University of Illinois at Urbana-Champaign, 2204 Griffith Drive @2 Champaign, IL 61820-7495 @3 USA @Z 3 aut.
A20       @1 8470-8483
A21       @1 2008
A23 01      @0 ENG
A43 01      @1 INIST @2 8940B @5 354000183953930120
A44       @0 0000 @1 © 2009 INIST-CNRS. All rights reserved.
A45       @0 1 p.
A47 01  1    @0 09-0048805
A60       @1 P
A61       @0 A
A64 01  1    @0 Atmospheric environment : (1994)
A66 01      @0 GBR
C01 01    ENG  @0 Simulation of summertime U.S. surface ozone diurnal cycle is influenced by the model representation of planetary boundary layer (PBL) mixing, spatial resolution, and precursor emissions. These factors are investigated here for five major regions (Northeast, Midwest, Southeast, California, and Southwest) by using the Model for Ozone And Related chemical Tracers version 2.4 (MOZART-2.4), with important modifications, to conduct sensitivity experiments for summer 1999 with three PBL mixing schemes, two horizontal resolutions and two emissions datasets. Among these factors, the PBL mixing is dominant. The default non-local scheme well reproduces the observed ozone diurnal variation, where the timing for the afternoon maximum and the morning minimum is within 1 h of the observed; biases for the minimum are less than 5 ppb except over the Southeast; and the ozone maximum-minimum contrast (OMMC) is within 10 ppb of observations except for the overprediction by 18.9 ppb over the Northeast. In contrast, the local scheme significantly overestimates the OMMC by 10-34 ppb over all regions as ozone and precursors are trapped too close to the ground. On the other hand, the full-mixing assumption underestimates the OMMC by 0-25 ppb, except over the Northeast, as the nighttime ozone decline is greatly underpredicted. As compared to PBL mixing, the effects of horizontal resolutions and precursor emissions being used are smaller but non-negligible. Overall, with the non-local mixing scheme, relatively high horizontal resolution (∼1.1°) and updated emissions data, the modified MOZART is capable of simulating the main features of the observed ozone diurnal cycle.
C02 01  X    @0 001D16C03
C03 01  X  FRE  @0 Troposphère @5 01
C03 01  X  ENG  @0 Troposphere @5 01
C03 01  X  SPA  @0 Troposfera @5 01
C03 02  X  FRE  @0 Eté @5 02
C03 02  X  ENG  @0 Summer @5 02
C03 02  X  SPA  @0 Verano @5 02
C03 03  X  FRE  @0 Pollution air @5 03
C03 03  X  ENG  @0 Air pollution @5 03
C03 03  X  SPA  @0 Contaminación aire @5 03
C03 04  X  FRE  @0 Polluant secondaire @5 04
C03 04  X  ENG  @0 Secondary pollutant @5 04
C03 04  X  SPA  @0 Contaminante secundario @5 04
C03 05  X  FRE  @0 Ozone @2 NK @2 FX @5 05
C03 05  X  ENG  @0 Ozone @2 NK @2 FX @5 05
C03 05  X  SPA  @0 Ozono @2 NK @2 FX @5 05
C03 06  X  FRE  @0 Distribution concentration @5 06
C03 06  X  ENG  @0 Concentration distribution @5 06
C03 06  X  SPA  @0 Distribución concentración @5 06
C03 07  X  FRE  @0 Variation temporelle @5 07
C03 07  X  ENG  @0 Time variation @5 07
C03 07  X  SPA  @0 Variación temporal @5 07
C03 08  X  FRE  @0 Variation diurne @5 08
C03 08  X  ENG  @0 Diurnal variation @5 08
C03 08  X  SPA  @0 Variación diurna @5 08
C03 09  X  FRE  @0 Simulation numérique @5 09
C03 09  X  ENG  @0 Numerical simulation @5 09
C03 09  X  SPA  @0 Simulación numérica @5 09
C03 10  X  FRE  @0 Analyse sensibilité @5 10
C03 10  X  ENG  @0 Sensitivity analysis @5 10
C03 10  X  SPA  @0 Análisis sensibilidad @5 10
C03 11  X  FRE  @0 Processus mélangeant @5 11
C03 11  X  ENG  @0 Mixing process @5 11
C03 11  X  SPA  @0 Proceso mezclante @5 11
C03 12  X  FRE  @0 Couche limite atmosphérique @5 12
C03 12  X  ENG  @0 Atmospheric boundary layer @5 12
C03 12  X  SPA  @0 Capa límite atmosférico @5 12
C03 13  X  FRE  @0 Emission polluant @5 13
C03 13  X  ENG  @0 Pollutant emission @5 13
C03 13  X  SPA  @0 Emisión contaminante @5 13
C03 14  X  FRE  @0 Précurseur @5 14
C03 14  X  ENG  @0 Precursor @5 14
C03 14  X  SPA  @0 Precursor @5 14
C03 15  X  FRE  @0 Résolution spatiale @5 15
C03 15  X  ENG  @0 Spatial resolution @5 15
C03 15  X  SPA  @0 Resolución espacial @5 15
C03 16  X  FRE  @0 Etats-Unis @2 NG @5 32
C03 16  X  ENG  @0 United States @2 NG @5 32
C03 16  X  SPA  @0 Estados Unidos @2 NG @5 32
C07 01  X  FRE  @0 Amérique du Nord @2 NG
C07 01  X  ENG  @0 North America @2 NG
C07 01  X  SPA  @0 America del norte @2 NG
C07 02  X  FRE  @0 Amérique @2 NG
C07 02  X  ENG  @0 America @2 NG
C07 02  X  SPA  @0 America @2 NG
N21       @1 033

Format Inist (serveur)

NO : PASCAL 09-0048805 INIST
ET : Global model simulation of summertime U.S. ozone diurnal cycle and its sensitivity to PBL mixing, spatial resolution, and emissions
AU : LIN (Jin-Tai); YOUN (Daeok); LIANG (Xin-Zhong); WUEBBLES (Donald J.)
AF : Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign. 105 S. Gregory Street/Urbana, IL 61801/Etats-Unis (1 aut., 4 aut.); Research Institute of Basic Sciences and School of Earth and Environmental Sciences, Seoul National University, Sillim 9-dong/Gwanak-gu, Seoul 151-747/Corée, République de (2 aut.); Illinois State Water Survey, University of Illinois at Urbana-Champaign, 2204 Griffith Drive/Champaign, IL 61820-7495/Etats-Unis (3 aut.)
DT : Publication en série; Niveau analytique
SO : Atmospheric environment : (1994); ISSN 1352-2310; Royaume-Uni; Da. 2008; Vol. 42; No. 36; Pp. 8470-8483; Bibl. 1 p.
LA : Anglais
EA : Simulation of summertime U.S. surface ozone diurnal cycle is influenced by the model representation of planetary boundary layer (PBL) mixing, spatial resolution, and precursor emissions. These factors are investigated here for five major regions (Northeast, Midwest, Southeast, California, and Southwest) by using the Model for Ozone And Related chemical Tracers version 2.4 (MOZART-2.4), with important modifications, to conduct sensitivity experiments for summer 1999 with three PBL mixing schemes, two horizontal resolutions and two emissions datasets. Among these factors, the PBL mixing is dominant. The default non-local scheme well reproduces the observed ozone diurnal variation, where the timing for the afternoon maximum and the morning minimum is within 1 h of the observed; biases for the minimum are less than 5 ppb except over the Southeast; and the ozone maximum-minimum contrast (OMMC) is within 10 ppb of observations except for the overprediction by 18.9 ppb over the Northeast. In contrast, the local scheme significantly overestimates the OMMC by 10-34 ppb over all regions as ozone and precursors are trapped too close to the ground. On the other hand, the full-mixing assumption underestimates the OMMC by 0-25 ppb, except over the Northeast, as the nighttime ozone decline is greatly underpredicted. As compared to PBL mixing, the effects of horizontal resolutions and precursor emissions being used are smaller but non-negligible. Overall, with the non-local mixing scheme, relatively high horizontal resolution (∼1.1°) and updated emissions data, the modified MOZART is capable of simulating the main features of the observed ozone diurnal cycle.
CC : 001D16C03
FD : Troposphère; Eté; Pollution air; Polluant secondaire; Ozone; Distribution concentration; Variation temporelle; Variation diurne; Simulation numérique; Analyse sensibilité; Processus mélangeant; Couche limite atmosphérique; Emission polluant; Précurseur; Résolution spatiale; Etats-Unis
FG : Amérique du Nord; Amérique
ED : Troposphere; Summer; Air pollution; Secondary pollutant; Ozone; Concentration distribution; Time variation; Diurnal variation; Numerical simulation; Sensitivity analysis; Mixing process; Atmospheric boundary layer; Pollutant emission; Precursor; Spatial resolution; United States
EG : North America; America
SD : Troposfera; Verano; Contaminación aire; Contaminante secundario; Ozono; Distribución concentración; Variación temporal; Variación diurna; Simulación numérica; Análisis sensibilidad; Proceso mezclante; Capa límite atmosférico; Emisión contaminante; Precursor; Resolución espacial; Estados Unidos
LO : INIST-8940B.354000183953930120
ID : 09-0048805

Links to Exploration step

Pascal:09-0048805

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Global model simulation of summertime U.S. ozone diurnal cycle and its sensitivity to PBL mixing, spatial resolution, and emissions</title>
<author>
<name sortKey="Lin, Jin Tai" sort="Lin, Jin Tai" uniqKey="Lin J" first="Jin-Tai" last="Lin">Jin-Tai Lin</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign. 105 S. Gregory Street</s1>
<s2>Urbana, IL 61801</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Youn, Daeok" sort="Youn, Daeok" uniqKey="Youn D" first="Daeok" last="Youn">Daeok Youn</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Research Institute of Basic Sciences and School of Earth and Environmental Sciences, Seoul National University, Sillim 9-dong</s1>
<s2>Gwanak-gu, Seoul 151-747</s2>
<s3>KOR</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Liang, Xin Zhong" sort="Liang, Xin Zhong" uniqKey="Liang X" first="Xin-Zhong" last="Liang">Xin-Zhong Liang</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Illinois State Water Survey, University of Illinois at Urbana-Champaign, 2204 Griffith Drive</s1>
<s2>Champaign, IL 61820-7495</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Wuebbles, Donald J" sort="Wuebbles, Donald J" uniqKey="Wuebbles D" first="Donald J." last="Wuebbles">Donald J. Wuebbles</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign. 105 S. Gregory Street</s1>
<s2>Urbana, IL 61801</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">09-0048805</idno>
<date when="2008">2008</date>
<idno type="stanalyst">PASCAL 09-0048805 INIST</idno>
<idno type="RBID">Pascal:09-0048805</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000094</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Global model simulation of summertime U.S. ozone diurnal cycle and its sensitivity to PBL mixing, spatial resolution, and emissions</title>
<author>
<name sortKey="Lin, Jin Tai" sort="Lin, Jin Tai" uniqKey="Lin J" first="Jin-Tai" last="Lin">Jin-Tai Lin</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign. 105 S. Gregory Street</s1>
<s2>Urbana, IL 61801</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Youn, Daeok" sort="Youn, Daeok" uniqKey="Youn D" first="Daeok" last="Youn">Daeok Youn</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Research Institute of Basic Sciences and School of Earth and Environmental Sciences, Seoul National University, Sillim 9-dong</s1>
<s2>Gwanak-gu, Seoul 151-747</s2>
<s3>KOR</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Liang, Xin Zhong" sort="Liang, Xin Zhong" uniqKey="Liang X" first="Xin-Zhong" last="Liang">Xin-Zhong Liang</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Illinois State Water Survey, University of Illinois at Urbana-Champaign, 2204 Griffith Drive</s1>
<s2>Champaign, IL 61820-7495</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Wuebbles, Donald J" sort="Wuebbles, Donald J" uniqKey="Wuebbles D" first="Donald J." last="Wuebbles">Donald J. Wuebbles</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign. 105 S. Gregory Street</s1>
<s2>Urbana, IL 61801</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Atmospheric environment : (1994)</title>
<title level="j" type="abbreviated">Atmos. environ. : (1994)</title>
<idno type="ISSN">1352-2310</idno>
<imprint>
<date when="2008">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Atmospheric environment : (1994)</title>
<title level="j" type="abbreviated">Atmos. environ. : (1994)</title>
<idno type="ISSN">1352-2310</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Air pollution</term>
<term>Atmospheric boundary layer</term>
<term>Concentration distribution</term>
<term>Diurnal variation</term>
<term>Mixing process</term>
<term>Numerical simulation</term>
<term>Ozone</term>
<term>Pollutant emission</term>
<term>Precursor</term>
<term>Secondary pollutant</term>
<term>Sensitivity analysis</term>
<term>Spatial resolution</term>
<term>Summer</term>
<term>Time variation</term>
<term>Troposphere</term>
<term>United States</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Troposphère</term>
<term>Eté</term>
<term>Pollution air</term>
<term>Polluant secondaire</term>
<term>Ozone</term>
<term>Distribution concentration</term>
<term>Variation temporelle</term>
<term>Variation diurne</term>
<term>Simulation numérique</term>
<term>Analyse sensibilité</term>
<term>Processus mélangeant</term>
<term>Couche limite atmosphérique</term>
<term>Emission polluant</term>
<term>Précurseur</term>
<term>Résolution spatiale</term>
<term>Etats-Unis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Simulation of summertime U.S. surface ozone diurnal cycle is influenced by the model representation of planetary boundary layer (PBL) mixing, spatial resolution, and precursor emissions. These factors are investigated here for five major regions (Northeast, Midwest, Southeast, California, and Southwest) by using the Model for Ozone And Related chemical Tracers version 2.4 (MOZART-2.4), with important modifications, to conduct sensitivity experiments for summer 1999 with three PBL mixing schemes, two horizontal resolutions and two emissions datasets. Among these factors, the PBL mixing is dominant. The default non-local scheme well reproduces the observed ozone diurnal variation, where the timing for the afternoon maximum and the morning minimum is within 1 h of the observed; biases for the minimum are less than 5 ppb except over the Southeast; and the ozone maximum-minimum contrast (OMMC) is within 10 ppb of observations except for the overprediction by 18.9 ppb over the Northeast. In contrast, the local scheme significantly overestimates the OMMC by 10-34 ppb over all regions as ozone and precursors are trapped too close to the ground. On the other hand, the full-mixing assumption underestimates the OMMC by 0-25 ppb, except over the Northeast, as the nighttime ozone decline is greatly underpredicted. As compared to PBL mixing, the effects of horizontal resolutions and precursor emissions being used are smaller but non-negligible. Overall, with the non-local mixing scheme, relatively high horizontal resolution (∼1.1°) and updated emissions data, the modified MOZART is capable of simulating the main features of the observed ozone diurnal cycle.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1352-2310</s0>
</fA01>
<fA03 i2="1">
<s0>Atmos. environ. : (1994)</s0>
</fA03>
<fA05>
<s2>42</s2>
</fA05>
<fA06>
<s2>36</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Global model simulation of summertime U.S. ozone diurnal cycle and its sensitivity to PBL mixing, spatial resolution, and emissions</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>LIN (Jin-Tai)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>YOUN (Daeok)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LIANG (Xin-Zhong)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>WUEBBLES (Donald J.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign. 105 S. Gregory Street</s1>
<s2>Urbana, IL 61801</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Research Institute of Basic Sciences and School of Earth and Environmental Sciences, Seoul National University, Sillim 9-dong</s1>
<s2>Gwanak-gu, Seoul 151-747</s2>
<s3>KOR</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Illinois State Water Survey, University of Illinois at Urbana-Champaign, 2204 Griffith Drive</s1>
<s2>Champaign, IL 61820-7495</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>8470-8483</s1>
</fA20>
<fA21>
<s1>2008</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>8940B</s2>
<s5>354000183953930120</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2009 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>09-0048805</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Atmospheric environment : (1994)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Simulation of summertime U.S. surface ozone diurnal cycle is influenced by the model representation of planetary boundary layer (PBL) mixing, spatial resolution, and precursor emissions. These factors are investigated here for five major regions (Northeast, Midwest, Southeast, California, and Southwest) by using the Model for Ozone And Related chemical Tracers version 2.4 (MOZART-2.4), with important modifications, to conduct sensitivity experiments for summer 1999 with three PBL mixing schemes, two horizontal resolutions and two emissions datasets. Among these factors, the PBL mixing is dominant. The default non-local scheme well reproduces the observed ozone diurnal variation, where the timing for the afternoon maximum and the morning minimum is within 1 h of the observed; biases for the minimum are less than 5 ppb except over the Southeast; and the ozone maximum-minimum contrast (OMMC) is within 10 ppb of observations except for the overprediction by 18.9 ppb over the Northeast. In contrast, the local scheme significantly overestimates the OMMC by 10-34 ppb over all regions as ozone and precursors are trapped too close to the ground. On the other hand, the full-mixing assumption underestimates the OMMC by 0-25 ppb, except over the Northeast, as the nighttime ozone decline is greatly underpredicted. As compared to PBL mixing, the effects of horizontal resolutions and precursor emissions being used are smaller but non-negligible. Overall, with the non-local mixing scheme, relatively high horizontal resolution (∼1.1°) and updated emissions data, the modified MOZART is capable of simulating the main features of the observed ozone diurnal cycle.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D16C03</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Troposphère</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Troposphere</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Troposfera</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Eté</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Summer</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Verano</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Pollution air</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Air pollution</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Contaminación aire</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Polluant secondaire</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Secondary pollutant</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Contaminante secundario</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Ozone</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Ozone</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Ozono</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Distribution concentration</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Concentration distribution</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Distribución concentración</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Variation temporelle</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Time variation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Variación temporal</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Variation diurne</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Diurnal variation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Variación diurna</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Simulation numérique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Numerical simulation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Simulación numérica</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Analyse sensibilité</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Sensitivity analysis</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Análisis sensibilidad</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Processus mélangeant</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Mixing process</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Proceso mezclante</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Couche limite atmosphérique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Atmospheric boundary layer</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Capa límite atmosférico</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Emission polluant</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Pollutant emission</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Emisión contaminante</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Précurseur</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Precursor</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Precursor</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Résolution spatiale</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Spatial resolution</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Resolución espacial</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Etats-Unis</s0>
<s2>NG</s2>
<s5>32</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>United States</s0>
<s2>NG</s2>
<s5>32</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Estados Unidos</s0>
<s2>NG</s2>
<s5>32</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Amérique du Nord</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>North America</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>America del norte</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Amérique</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>America</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>America</s0>
<s2>NG</s2>
</fC07>
<fN21>
<s1>033</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 09-0048805 INIST</NO>
<ET>Global model simulation of summertime U.S. ozone diurnal cycle and its sensitivity to PBL mixing, spatial resolution, and emissions</ET>
<AU>LIN (Jin-Tai); YOUN (Daeok); LIANG (Xin-Zhong); WUEBBLES (Donald J.)</AU>
<AF>Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign. 105 S. Gregory Street/Urbana, IL 61801/Etats-Unis (1 aut., 4 aut.); Research Institute of Basic Sciences and School of Earth and Environmental Sciences, Seoul National University, Sillim 9-dong/Gwanak-gu, Seoul 151-747/Corée, République de (2 aut.); Illinois State Water Survey, University of Illinois at Urbana-Champaign, 2204 Griffith Drive/Champaign, IL 61820-7495/Etats-Unis (3 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Atmospheric environment : (1994); ISSN 1352-2310; Royaume-Uni; Da. 2008; Vol. 42; No. 36; Pp. 8470-8483; Bibl. 1 p.</SO>
<LA>Anglais</LA>
<EA>Simulation of summertime U.S. surface ozone diurnal cycle is influenced by the model representation of planetary boundary layer (PBL) mixing, spatial resolution, and precursor emissions. These factors are investigated here for five major regions (Northeast, Midwest, Southeast, California, and Southwest) by using the Model for Ozone And Related chemical Tracers version 2.4 (MOZART-2.4), with important modifications, to conduct sensitivity experiments for summer 1999 with three PBL mixing schemes, two horizontal resolutions and two emissions datasets. Among these factors, the PBL mixing is dominant. The default non-local scheme well reproduces the observed ozone diurnal variation, where the timing for the afternoon maximum and the morning minimum is within 1 h of the observed; biases for the minimum are less than 5 ppb except over the Southeast; and the ozone maximum-minimum contrast (OMMC) is within 10 ppb of observations except for the overprediction by 18.9 ppb over the Northeast. In contrast, the local scheme significantly overestimates the OMMC by 10-34 ppb over all regions as ozone and precursors are trapped too close to the ground. On the other hand, the full-mixing assumption underestimates the OMMC by 0-25 ppb, except over the Northeast, as the nighttime ozone decline is greatly underpredicted. As compared to PBL mixing, the effects of horizontal resolutions and precursor emissions being used are smaller but non-negligible. Overall, with the non-local mixing scheme, relatively high horizontal resolution (∼1.1°) and updated emissions data, the modified MOZART is capable of simulating the main features of the observed ozone diurnal cycle.</EA>
<CC>001D16C03</CC>
<FD>Troposphère; Eté; Pollution air; Polluant secondaire; Ozone; Distribution concentration; Variation temporelle; Variation diurne; Simulation numérique; Analyse sensibilité; Processus mélangeant; Couche limite atmosphérique; Emission polluant; Précurseur; Résolution spatiale; Etats-Unis</FD>
<FG>Amérique du Nord; Amérique</FG>
<ED>Troposphere; Summer; Air pollution; Secondary pollutant; Ozone; Concentration distribution; Time variation; Diurnal variation; Numerical simulation; Sensitivity analysis; Mixing process; Atmospheric boundary layer; Pollutant emission; Precursor; Spatial resolution; United States</ED>
<EG>North America; America</EG>
<SD>Troposfera; Verano; Contaminación aire; Contaminante secundario; Ozono; Distribución concentración; Variación temporal; Variación diurna; Simulación numérica; Análisis sensibilidad; Proceso mezclante; Capa límite atmosférico; Emisión contaminante; Precursor; Resolución espacial; Estados Unidos</SD>
<LO>INIST-8940B.354000183953930120</LO>
<ID>09-0048805</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000094 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000094 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:09-0048805
   |texte=   Global model simulation of summertime U.S. ozone diurnal cycle and its sensitivity to PBL mixing, spatial resolution, and emissions
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023